UVA 108 - Maximum Sum (2D MAX SUM)
Problem: Given 2D (N*N) array with some +ve & -ve integers.
You have to compute the sum of submatrix with maximum sum.
IDEA:
1.) Fix one column lft .
2.) Fix one column rgt from lft to rgtmost corner.
3.) For every fixed lft & rgt column, traverse below rowwise &
calculate cumulative sum.
Note: We have to precalculate rowise sum earlier.
4.) If sum becomes negative then, make it 0 & update maximum sum on every step.
So, overall complexity is O(N^3).
///==================================================///
/// HELLO WORLD !! ///
/// IT'S ME ///
/// BISHAL GAUTAM ///
/// [ bsal.gautam16@gmail.com ] ///
///==================================================///
#include<bits/stdc++.h>
#define X first
#define Y second
#define mpp make_pair
#define nl printf("\n")
#define SZ(x) (int)(x.size())
#define pb(x) push_back(x)
#define pii pair<int,int>
#define pll pair<ll,ll>
///---------------------
#define S(a) scanf("%d",&a)
#define P(a) printf("%d",a)
#define SL(a) scanf("%lld",&a)
#define S2(a,b) scanf("%d%d",&a,&b)
#define SL2(a,b) scanf("%lld%lld",&a,&b)
///------------------------------------
#define all(v) v.begin(),v.end()
#define CLR(a) memset(a,0,sizeof(a))
#define SET(a) memset(a,-1,sizeof(a))
#define fr(i,a,n) for(int i=a;i<=n;i++)
using namespace std;
typedef long long ll;
/// dp10it 0123456789012345678 ///
#define MX 102
#define inf 1000000010
#define MD 1000000007LL
#define eps 1e-9
///===============================///
int n,dp[MX][MX];
int main() {
int tc,cs=1,i,j,k,x;
S(n);
fr(i,1,n){
fr(j,1,n){
S(x);
dp[i][j]=dp[i][j-1]+x;
}
}
int mx=-inf;
for(i=1;i<=n;i++){ ///First column;
for(j=i;j<=n;j++){ ///Second column
int mxx=-inf,sm=0;
for(k=1;k<=n;k++){
x=dp[k][j]-dp[k][i-1];
sm+=x;
mxx=max(mxx,sm);
if(sm<0)sm=0;
}
mx=max(mx,mxx);
}
}
printf("%lld\n",mx);
return 0;
}
Comments
Post a Comment