13154 - Extreme XOR Sum (Observation, Precal )



/// Story Behind This Problem!!
/// As problem pattern was similar to another problem which I had faced
/// recently on HackerRank( XOR MATRIX )
/// I easily figured out the pattern of NcR. Main Problem was with complexity!!
/// But, this problem luckily passed within 2 sec, as there was not strong pretests.
/// I heard after contest that complexity can be reduced to O( q*sqrt(n) ). I have no
/// proper idea of this Sqrt decomposition solution.
/// My solution is based on following idea:
/// 1. Observe the patten for different length.
/// 2. If ncr[ len ][ j ] is odd then include jth item of that len otherwise exclude.
/// 3. Now, As XOR follows cummulative property answer each xor sum of subsegment
/// containing odd values only on that len.


///==================================================///
/// HELLO WORLD !! ///
/// IT'S ME ///
/// BISHAL GAUTAM ///
/// [ bsal.gautam16@gmail.com ] ///
///==================================================///
#include<bits/stdc++.h>
#define X first
#define Y second
#define mpp make_pair
#define nl printf("\n")
#define SZ(x) (int)(x.size())
#define pb(x) push_back(x)
#define pii pair<int,int>
#define pll pair<ll,ll>
///---------------------
#define S(a) scanf("%d",&a)
#define P(a) printf("%d",a)
#define SL(a) scanf("%lld",&a)
#define S2(a,b) scanf("%d%d",&a,&b)
#define SL2(a,b) scanf("%lld%lld",&a,&b)
///------------------------------------
#define all(v) v.begin(),v.end()
#define CLR(a) memset(a,0,sizeof(a))
#define SET(a) memset(a,-1,sizeof(a))
#define fr(i,a,n) for(int i=a;i<=n;i++)
using namespace std;
typedef long long ll;

/// Digit 0123456789012345678 ///
#define MX 10001
#define inf 2000000010
#define MD 1000000007
#define eps 1e-9
///===============================///

int dp[MX+1],ncr[2][MX+1];
vector<int>v[MX];

void Precal_Pattern() {
for(int i=1; i<=10000; i++) {
ncr[i&1][1]=1;
v[i].pb(1);
bool f=0;
for(int j=2; j<=i; j++) {
ncr[i&1][j]=( ncr[!(i&1)][j]+ncr[!(i&1)][j-1] )%2;
if( ncr[i&1][j]==0 && !f )v[i].pb( j-1 ),f=1;
if( ncr[i&1][j] && f )v[i].pb( j ),f=0;
}
ncr[i&1][i]=1;
v[i].pb( i );
}
}

int main() {
int tc,cs=1,i,n,x,y,q;
Precal_Pattern( );
S(tc);
while(tc--) {
S(n);
dp[0]=0;
for(int i=1; i<=n; i++) {
S(x);
dp[i]=(dp[i-1]^x);
}
S(q);
printf("Case %d:\n",cs++);
while(q--) {
S2(x,y);
int g=(y-x+1);
int sz=SZ( v[g] );
int xr=0;
for(int i=0; i<sz; i+=2) {
int l=v[g][i];
int r=v[g][i+1];
xr^=( dp[ x+r ]^dp[ x+l-1 ] );
}
printf("%d\n",xr);
}
}
return 0;
}

Comments

Post a Comment

Popular posts from this blog

Two Pointers Technique & Binary Search For Beginners

HackerRank: Poisonous Plants ( Stacks, DS )

HackerRank: Find Maximum Index Product ( Stack, DS, Histogram Logic )