UVA 1734 : Numbered Card (Bitmask +Digit dp)
UVA 1734: Numbered Card
( ACM-ICPC Dhaka Regional 2015 )
Idea:
The problem is asking for total numbers of subsets that can be constructed by using only numbers within 1 to N such that no two numbers contains same digit on their representation . Where, N can be as much as 1e9.
So, main generalization to this problem is considering the pattern of numbers that can be included in a subset.Let us assume that 1,11,111,111,1111 are same type of numbers. Similarly, 2,22,222,2222...also 12,21,211,122,121 are of same type of numbers. So, it is easy to see that there are total 2^10 type of numbers.So, total size of subset will never be great than 2^10.
So, if we calculate for each type of numbers how many are there within 1 to N. (This can be done with digit dp) Then, we may proceeds for core idea of problem.
The idea is that, we can find total different subsets by DP keeping track of current position out of total 2^10 position and the mask of different digit included so far. So, we may have choices for each type of numbers that we may either do not include it or we include only one of it on our subset considering that non of digit of that type are already included in mask.
(Feel Free to mail me if you face any problem)
Source Code:
///============================================================================///
/// ///
/// IT'S ME ///
/// BISHAL GAUTAM ///
/// CSE,JAHANGIRNAGAR UNIVERSITY,DHAKA ///
/// "Follow Excellence..Success will chase U" ///
/// ///
///============================================================================///
#include<bits/stdc++.h>
#define PI acos(-1.0)
#define X first
#define Y second
#define mpp make_pair
#define nl printf("\n")
#define SZ(x) (int)(x.size())
#define pb(x) push_back(x)
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pdd pair<double,double>
///==Scanning====///
#define S(a) scanf("%d",&a)
#define P(a) printf("%d",a)
#define SL(a) scanf("%lld",&a)
#define S2(a,b) scanf("%d%d",&a,&b)
#define S3(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define SL2(a,b) scanf("%lld%lld",&a,&b)
#define SL3(a,b,c) scanf("%lld%lld%lld",&a,&b,&c)
///==Arr,Vec Functions==///
#define all(v) v.begin(),v.end()
#define CLR(a) memset(a,0,sizeof(a))
#define SET(a) memset(a,-1,sizeof(a))
#define CPY(a,b) memcpy(a,b,sizeof(a))
#define MAX(a) (*max_element(all(a)))
#define MIN(a) (*min_element(all(a)))
#define fv(i,v) for(int i=0;i<(int)v.size();i++)
#define fr(i,a,n) for(int i=a;i<=n;i++)
#define rf(i,n,a) for(int i=n;i>=a;i--)
///===Some Useful====///
#define OnBit(a) __builtin_popcountll((ll)a)
#define LB(v,k) lower_bound(v.begin(),v.end(),k)
#define _cin ios_base::sync_with_stdio(0),cin.tie(0)
#define dbg(x) cerr<<__LINE__<< ":: "<<#x<<"= "<<x<<endl
#define UNIK(v) sort(all(v)),v.resize( unique(all(v)) -v.begin() );
#define fi(n) for(__typeof(n.begin()) it=n.begin();it!=n.end();it++)
#define IO freopen("A.in","r",stdin),freopen("Out.out","w",stdout)
using namespace std;
///===TypeDefs=====///
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vll;
typedef vector<pii> vii;
///===Number Theory===///
//template< class T > inline T SQR(T a) { return ((a)*(a)); }
//template< class T > inline T gcd(T a,T b) {a=abs(a);b=abs(b); if(!b) return a; return gcd(b,a%b);}
//template< class T > inline T lcm(T a,T b) {a=abs(a);b=abs(b); return (a/_gcd(a,b))*b;}
//template<typename T> T POW(T b,T p) {T r=1; while(p){if(p&1)r=(r*b);b=(b*b);p>>=1;}return r;}
//template<typename T> T BigMod(T b,T p,T m) {T r=1; while(p){if(p&1)r=(r*b)%m;b=(b*b)%m;p>>=1;}return r;}
//template<typename T> T ModInverse(T n,T m) { return BigMod(n,m-2,m); }
//
/////==GeoMetry=========///
//double DEG(double x) { return (180.0*x)/(PI);}
//double RAD(double x) { return (x*(double)PI)/(180.0);}
//template<typename T> double DIS(T a,T b){ return sqrt((double)( SQR(a.X-b.X)+ SQR(a.Y-b.Y))); }
//template<typename T> T ANGLE(T a,T b){ return atan( double(a.Y-b.Y) / double(a.X-b.X));}
//template<typename T> int isLeft(T a,T b,T c) { return (c.X-a.X)*(b.Y-a.Y)-(b.X-a.X)*(c.Y-a.Y); }
//
/////===IO-Related===///
//template< class T > void prnt(T v) { fv(i,v) {if(!i)cout<<v[i];else cout<<" "<<v[i];} cout<<endl; }
//template< class T > void BIN(T n) { if(!n){nl;return;}BIN(n/2);cout<<(n%2); }
//template<typename T> T in(){ char ch; T n = 0; bool ng = false; while (1) { ch = getchar(); if (ch == '-') { ng = true; ch = getchar(); break;} if (ch>='0' && ch<='9') break; } while (1) { n = n*10 + (ch - '0'); ch = getchar(); if (ch<'0' || ch>'9') break; } return (ng?-n:n); }
///====Some-Stuff===///
// atoi( str.c_str() ); // char string to int
/// sprintf(str,"%d",num);// num to char string
///int month[]={-1,31,28,31,30,31,30,31,31,30,31,30,31}; //Not Leap Year
///int dx[]= {1,0,-1,0};int dy[]= {0,1,0,-1}; //4 Direction
///int dx[]={1,1,0,-1,-1,-1,0,1};int dy[]={0,1,1,1,0,-1,-1,-1};//8 Direction
///int dx[]={2,1,-1,-2,-2,-1,1,2};int dy[]={1,2,2,1,-1,-2,-2,-1};//Knight Direction
/**************************************************************************************
* ///////////////////////////////////////////////////////////////////////////////////*
*************************************************************************************/
///==========CONSTANTS==============///
/// Digit 0123456789*#@%&^$"- ///
#define MX 500000
#define inf 2000000000
#define md 1000000007LL
#define eps 1e-9
///================================///
int n,ar[1030+5];
int Brute(int msk){
set<int>St;
for(int i=0;i<=9;i++){
if( msk&(1<<i) )St.insert( i );
}
int cnt=0;
for(int i=0;i<=n;i++){
int ok=1;
set<int>tp;
if( i==0 )tp.insert(0);
int nm=i;
while(nm){
tp.insert( nm%10 );
nm/=10;
}
if( tp==St )cnt++;
}
return cnt;
}
int ms,ln;
char s[12];
ll dpp[11][2][2][1030];
ll DP(int p,int ch,int z,int msk){
if( p==ln ) return (msk==ms);
ll &ret=dpp[p][ch][z][msk];
if(ret!=-1) return ret;
ret=0;
int mx=s[p]-'0';
if(ch)mx=9;
for(int i=0;i<=mx;i++){
int nz=(z||i>0);
int nmsk=msk;
if( nz ){
if( !(ms&(1<<i)) ) continue;
else nmsk|=(1<<i);
}
ret+=DP(p+1,ch||i<mx,nz,nmsk);
}
return ret;
}
ll lim,dp[1030][1030];
ll go(int p,int msk){
if(p==lim+1) return 1LL;
ll &ret=dp[p][msk];
if(ret!=-1) return ret;
ret=go(p+1,msk)%md;
if( (msk&p)==0 )ret=(ret+ ((ll)ar[p]*go(p+1,msk|p))%md )%md;
return ret;
}
int main(){
int tc,cs=1,i,j,k;
S(tc);
while(tc--){
S(n);
sprintf(s,"%d",n);
ln=strlen(s);
lim=(1<<10)-1;
for(i=2;i<=lim;i++){
ms=i;
SET(dpp);
ar[i]=DP(0,0,0,0);
//ar[i]=Brute(i);
}
SET(dp);
ll ans=go(2,0);
printf("Case %d: %lld\n",cs++,(ans-1+md)%md);
}
return 0;
}
What are the state variables for the dp array?
ReplyDeleteObviously we need a bitmask to prevent taking a digit that is already part of a number in the current set.
But how can we prevent counting {1,2} & {2,1} as two different sets?
Thanks
As we already counted total bumbers from 1 to N for each bitmasks
Deleterepresenting digits on array-ar.
so, after that, dp array represents position bitmasks array-ar (p) and
total masks formed by including/non including different mask array-ar (msk).
So, obviously it prevents counting {1,2} and {2,1} twice,coz, we are including mask
for 1 at first and then for 2.